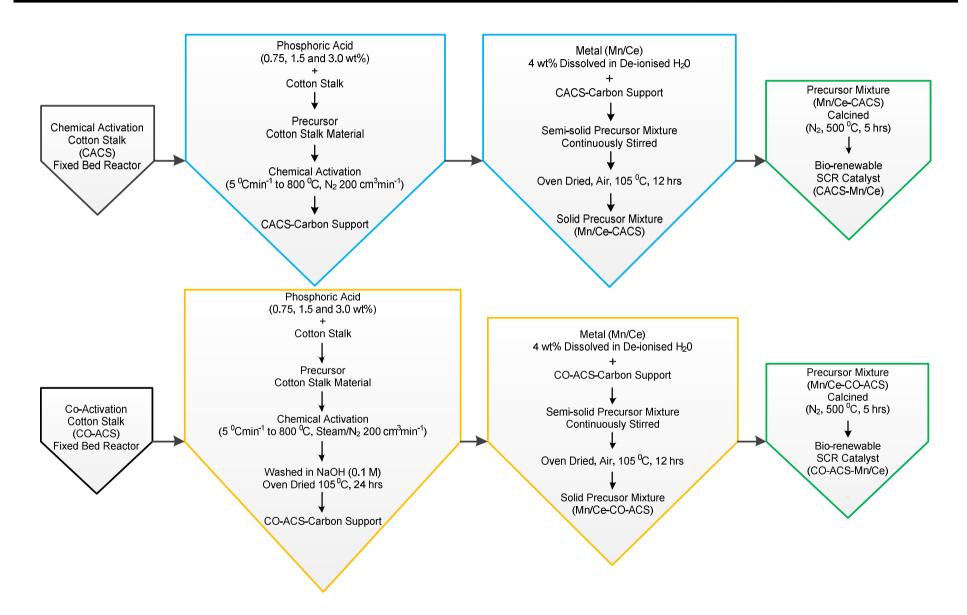
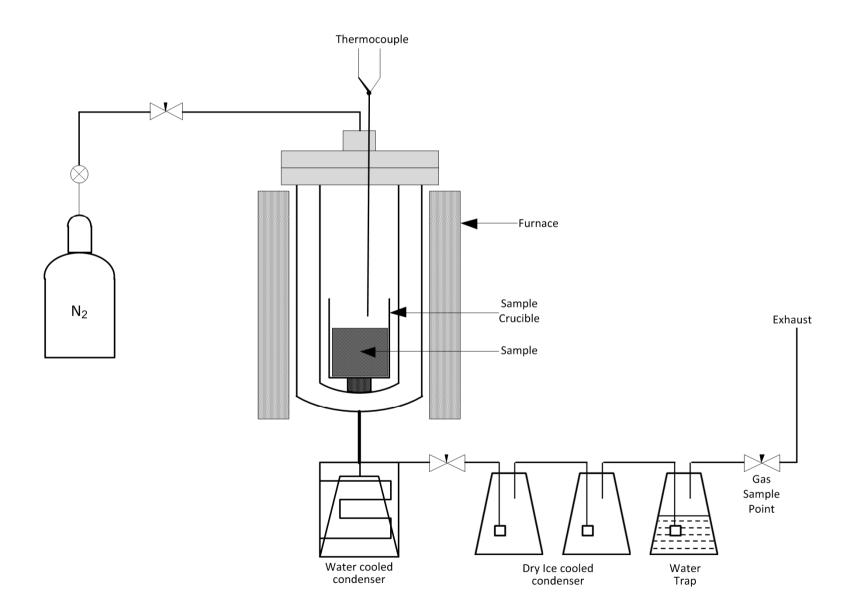
School of Process, Environmental & Materials Engineering

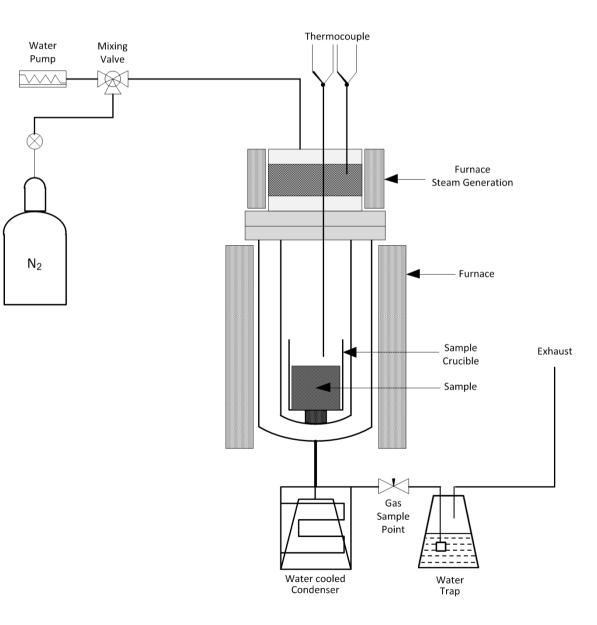
Novel Application of Bio-char as a Catalyst in the Low Temperature SRC-deNO_x Process

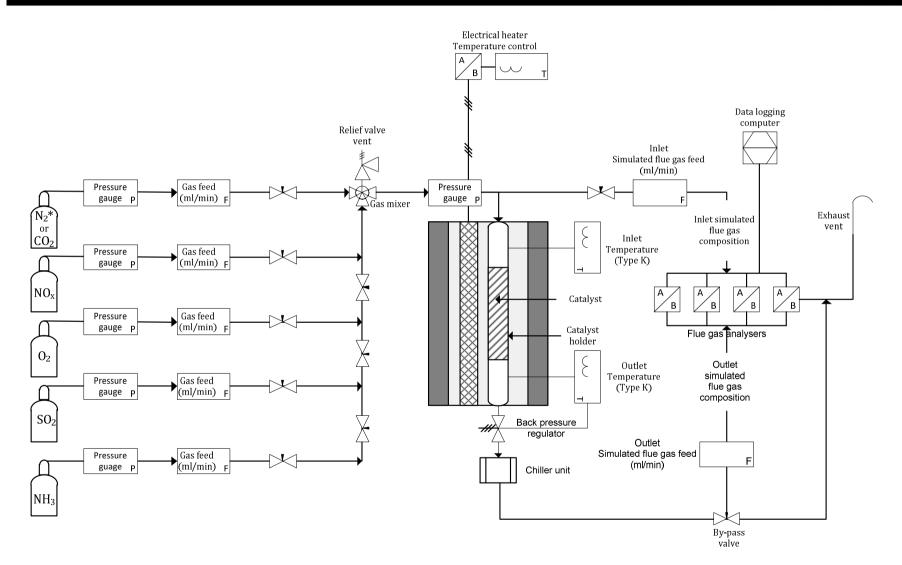
Surjit Singh


- SCR unit located up stream of air pre-heaters, FGD and particulate control devices to meet temperature requirements (300 – 400 °C).
- SCR unit aids in the conversion of SO₂ to SO₃ and the production of ammonia salts ((NH₄)SO₄ / (NH₄)HSO₄) known for their respective corrosive and fouling nature.
- SCR unit replacement costly and performed during an outage.

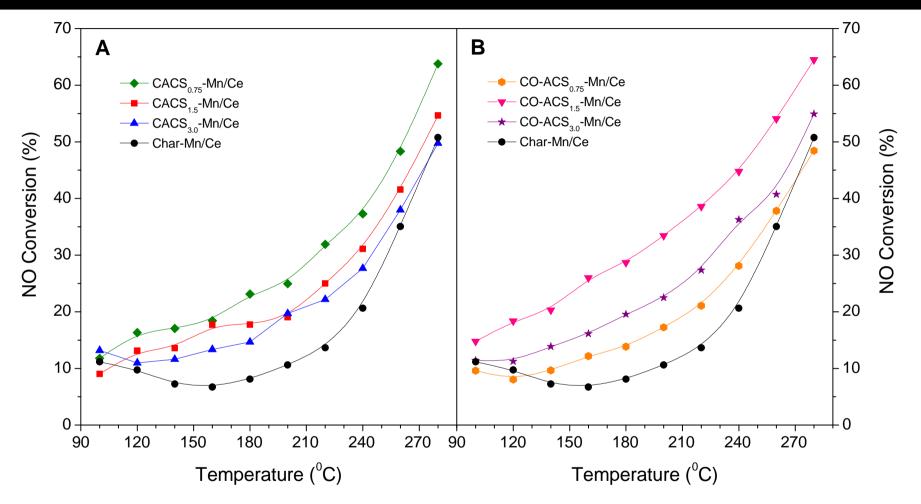
- Low temperature SCR (100 200 °C) down stream of air pre-heaters, FGD and particulate control devices.
- Low temperature SCR avoids conversion of SO₂ to SO₃ and the production of ammonia salts.
- Novel use of a waste derived SCR catalyst represents a way of combining waste disposal, energy recovery and pollution control (NO) in one process.
- Oxides of Manganese (Mn) and Ceruim (Ce) demonstrate excellent performance at low temperatures due to unique redox and acid-base properties.


Chemical Activation and Co-activation Processes FACULTY OF ENGINEERING


Fixed Bed Reactor Chemical Activation FACULTY OF ENGINEERING


Modified Fixed Bed Reactor Co-activation FACULTY OF ENGINEERING

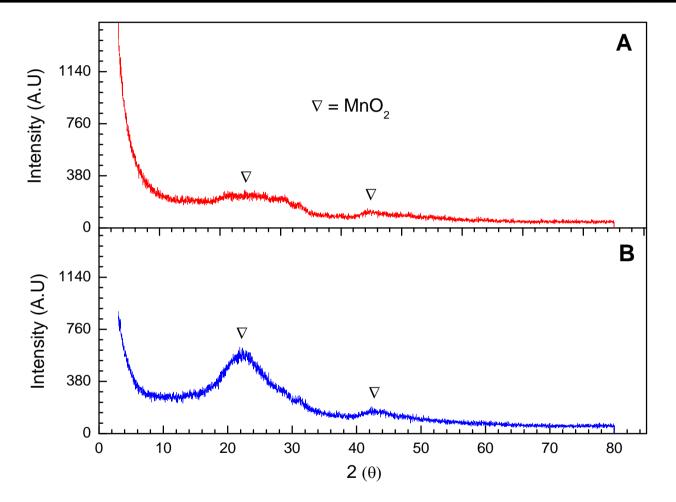
Fixed Bed SCR Reactor FACULTY OF ENGINEERING



Chemical Activation							
SCR-deNO _x Catalyst	Ce/Mn (Molar Ratio)	Temperature (ºC)	H ₃ PO ₄ (wt% Ratio)	Hold Time (Hrs)	Atmosphere	BET Surface Area (m² g ⁻¹)	Pore Diameter (nm)
CACS _{0.75} -Mn/Ce	1:2	800	0.75:1	2	N ₂	826.95	2.74
CACS _{1.5} -Mn/Ce	1:2	800	1.5:1	2	N ₂	1100.63	3.79
CACS _{3.0} -Mn/Ce	1:2	800	3.0:1	2	N ₂	1184.83	5.26
Co- Activation							
CO-ACS _{0.75} -Mn/Ce	1:2	800	0.75:1	2	N ₂ /Steam	1293.90	2.46
CO-ACS _{1.5} -Mn/Ce	1:2	800	1.5:1	2	N ₂ /Steam	1613.63	3.45
CO-ACS _{1.5} -Mn/Ce	1:2	800	3.0:1	2	N ₂ /Steam	1541.00	4.61

Experimental conditions employed to chemically activate (CACS) and co-activate (CO-ACS) cotton stalk impregnated with Ce/Mn.

Results-NO Reduction FACULTY OF ENGINEERING


UNIVERSITY OF LEEDS

NO conversion (%) of chemically activated (CACS_x-Mn/Ce) and co-activated (CO-ACS_x-Mn/Ce) cotton stalk derived SCR-deNO_x catalysts impregnated with Mn/Ce. A = CACS_x-Mn/Ce, B= CO-ACS_x-Mn/Ce.

Results-XRD FACULTY OF ENGINEERING

X-ray diffraction patterns of chemically activated (CACS_x-Mn/Ce) and co-activated (CO-ACS_x-Mn/Ce) cotton stalk derived SCR-deNO_x catalysts impregnated with Mn/Ce. A = CACS_{1.5}-Mn/Ce, B = CO-ACS_{1.5}-Mn/Ce.

Discussion FACULTY OF ENGINEERING

- NO conversion efficiencies were seen to range from ~48 % to 68 % for both CACS_x-Mn/Ce and CO-ACS_x-Mn/Ce.
- The catalysts ability to oxidize NO to NO_2 is crucial for the overall conversion of NO to N_2 :

$$NH_3(aq) + O(aq) \rightarrow NH_2(aq) + OH(aq)$$
 RQ-1

$$2NO(g) + 2O_2(g) \rightarrow 2NO_2(aq) \qquad \qquad RQ-2$$

$$NH_2(aq) + NO(g) \rightarrow NH_2NO(aq) \rightarrow N_2(g) + H_2O(g)$$
 RQ-3

 $OH (aq) + NO_2 (aq) \rightarrow O (aq) + HNO_2 (aq) \qquad \qquad RQ-4$

 $NH_3(aq) + HNO_2(aq) \rightarrow NH_4NO_2(aq) \rightarrow NH_2NO(aq) + H_2O(g) \rightarrow N_2(g) + 2H_2O(g)$ RQ-5

• The required excess of O_2 for reactions 1 and 2 to occur is significantly reduced impacting on reactions 3 to 5.

Discussion FACULTY OF ENGINEERING

- The redox potential of the catalysts is dependent on the transition metals (valency) ability to maximize reaction rates between NO and NH₃ in the presence of O₂ on their respective active sites.
- Saturation of the active sites is suggested to occur rapidly allowing for an increased excess of NH₃ and NO to pass un-reacted over the catalyst.
- The low metal loading of 4 wt% is thought to be mainly responsible for the conservative NO reductions.
- Historical literature has demonstrated NO reductions >95% for metal loadings ranging from 10 - 30 wt% at temperatures between 150 and 230 °C.

- The raw cotton stalk and pyrolysed char have shown a potential for possible application in the low temperature SCR-deNO_x process.
- NO reduction far more dependent on the wt% of the metal loading than the physical parameters such as the pore size, pore structure and surface area.
- The addition of phosphoric acid significantly increased the BET surface area (m²g⁻¹) for CACS_x-Mn/Ce and CO-ACS_x-Mn/Ce catalysts.
- Higher NO reductions can be realised by an increase in the metal loadings of Mn/Ce.

- The influence of the activation methods in conjunction with H₃PO₄ on NO reduction are complex and require further investigation.
- Investigate the highest NO reductions associated with metal loading (4 wt% - 30 wt%).
- SCR experiments using a variety of other waste materials as a catalytic support (MSW, waste plastics and waste tyres).
- SCR experiments to be conducted in a synthesised flue gas containing both particulates, SO_2 and H_2O as well as Hg.
- Investigate application of low temperature catalyst in NO emission control from heavy duty vehicle engines.

Acknowledgements

Funding body:

• This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) and the National Natural Science Foundation of China (NSFC).

Engineering and Physical Sciences Research Council

